Monday, March 23, 2020

'SMALL WORLD', chapter, BILL BRYSON, 'A SHORT HISTORY OF NEARLY EVERYTHING' (2003)

VARIETIES OF MICROBES
 SPIROCHETES
 CYANOBACTERIA
 BACILLUS
GEOBACTER

from Bill Bryson, A Short History of Nearly Everything, 2003

20 SMALL WORLD

IT’S PROBABLY NOT a good idea to take too personal an interest in your microbes. Louis Pasteur, the great French chemist and bacteriologist, became so preoccupied with them that he took to peering critically at every dish placed before him with a magnifying glass, a habit that presumably did not win him many repeat invitations to dinner.

In fact, there is no point in trying to hide from your bacteria, for they are on and around you always, in numbers you can’t conceive. If you are in good health and averagely diligent about hygiene, you will have a herd of about one trillion bacteria grazing on your fleshy plains—about a hundred thousand of them on every square centimeter of skin. They are there to dine off the ten billion or so flakes of skin you shed every day, plus all the tasty oils and fortifying minerals that seep out from every pore and fissure. You are for them the ultimate food court, with the convenience of warmth and constant mobility thrown in. By way of thanks, they give you B.O.

And those are just the bacteria that inhabit your skin. There are trillions more tucked away in your gut and nasal passages, clinging to your hair and eyelashes, swimming over the surface of your eyes, drilling through the enamel of your teeth. Your digestive system alone is host to more than a hundred trillion microbes, of at least four hundred types. Some deal with sugars, some with starches, some attack other bacteria. A surprising number, like the ubiquitous intestinal spirochetes, have no detectable function at all. They just seem to like to be with you. Every human body consists of about 10 quadrillion cells, but about 100 quadrillion bacterial cells. They are, in short, a big part of us. From the bacteria’s point of view, of course, we are a rather small part of them.

Because we humans are big and clever enough to produce and utilize antibiotics and disinfectants, it is easy to convince ourselves that we have banished bacteria to the fringes of existence. Don’t you believe it. Bacteria may not build cities or have interesting social lives, but they will be here when the Sun explodes. This is their planet, and we are on it only because they allow us to be.

Bacteria, never forget, got along for billions of years without us. We couldn’t survive a day without them. They process our wastes and make them usable again; without their diligent munching nothing would rot. They purify our water and keep our soils productive. Bacteria synthesize vitamins in our gut, convert the things we eat into useful sugars and polysaccharides, and go to war on alien microbes that slip down our gullet.

We depend totally on bacteria to pluck nitrogen from the air and convert it into useful nucleotides and amino acids for us. It is a prodigious and gratifying feat. As Margulis and Sagan note, to do the same thing industrially (as when making fertilizers) manufacturers must heat the source materials to 500 degrees centigrade and squeeze them to three hundred times normal pressures. Bacteria do it all the time without fuss, anank goodness, for no larger organism could survive without the nitrogen they pass on. Above all, microbes continue to provide us with the air we breathe and to keep the atmosphere stable. Microbes, including the modern versions of cyanobacteria, supply the greater part of the planet’s breathable oxygen. Algae and other tiny organisms bubbling away in the sea blow out about 150 billion kilos of the stuff every year.

And they are amazingly prolific. The more frantic among them can yield a new generation in less than ten minutes; Clostridium perfringens, the disagreeable little organism that causes gangrene, can reproduce in nine minutes. At such a rate, a single bacterium could theoretically produce more offspring in two days than there are protons in the universe. “Given an adequate supply of nutrients, a single bacterial cell can generate 280,000 billion individuals in a single day,” according to the Belgian biochemist and Nobel laureate Christian de Duve. In the same period, a human cell can just about manage a single division.

About once every million divisions, they produce a mutant. Usually this is bad luck for the mutant—change is always risky for an organism—but just occasionally the new bacterium is endowed with some accidental advantage, such as the ability to elude or shrug off an attack of antibiotics. With this ability to evolve rapidly goes another, even scarier advantage. Bacteria share information. Any bacterium can take pieces of genetic coding from any other. Essentially, as Margulis and Sagan put it, all bacteria swim in a single gene pool. Any adaptive change that occurs in one area of the bacterial universe can spread to any other. It’s rather as if a human could go to an insect to get the necessary genetic coding to sprout wings or walk on ceilings. It means that from a genetic point of view bacteria have become a single superorganism—tiny, dispersed, but invincible.

They will live and thrive on almost anything you spill, dribble, or shake loose. Just give them a little moisture—as when you run a damp cloth over a counter—and they will bloom as if created from nothing. They will eat wood, the glue in wallpaper, the metals in hardened paint. Scientists in Australia found microbes known as Thiobacillus concretivorans that lived in—indeed, could not live without—concentrations of sulfuric acid strong enough to dissolve metal. A species called Micrococcus radiophilus was found living happily in the waste tanks of nuclear reactors, gorging itself on plutonium and whatever else was there. Some bacteria break down chemical materials from which, as far as we can tell, they gain no benefit at all.

They have been found living in boiling mud pots and lakes of caustic soda, deep inside rocks, at the bottom of the sea, in hidden pools of icy water in the McMurdo Dry Valleys of Antarctica, and seven miles down in the Pacific Ocean where pressures are more than a thousand times greater than at the surface, or equivalent to being squashed beneath fifty jumbo jets. Some of them seem to be practically indestructible. Deinococcus radiodurans is, according to theEconomist , “almost immune to radioactivity.” Blast its DNA with radiation, and the pieces immediately reform “like the scuttling limbs of an undead creature from a horror movie.”

Perhaps the most extraordinary survival yet found was that of a Streptococcus bacterium that was recovered from the sealed lens of a camera that had stood on the Moon for two years. In short, there are few environments in which bacteria aren’t prepared to live. “They are finding now that when they push probes into ocean vents so hot that the probes actually start to melt, there are bacteria even there,” Victoria Bennett told me.

In the 1920s two scientists at the University of Chicago, Edson Bastin and Frank Greer, announced that they had isolated from oil wells strains of bacteria that had been living at depths of two thousand feet. The notion was dismissed as fundamentally preposterous—there was nothing to live on at two thousand feet—and for fifty years it was assumed that their samples had been contaminated with surface microbes. We now know that there are a lot of microbes living deep within the Earth, many of which have nothing at all to do with the organic world. They eat rocks or, rather, the stuff that’s in rocks—iron, sulfur, manganese, and so on. And they breathe odd things too—iron, chromium, cobalt, even uranium. Such processes may be instrumental in concentrating gold, copper, and other precious metals, and possibly deposits of oil and natural gas. It has even been suggested that their tireless nibblings created the Earth’s crust.

Some scientists now think that there could be as much as 100 trillion tons of bacteria living beneath our feet in what are known as subsurface litho-autotrophic microbial ecosystems—SLiME for short. Thomas Gold of Cornell has estimated that if you took all the bacteria out of the Earth’s interior and dumped it on the surface, it would cover the planet to a depth of five feet. If the estimates are correct, there could be more life under the Earth than on top of it.

At depth microbes shrink in size and become extremely sluggish. The liveliest of them may divide no more than once a century, some no more than perhaps once in five hundred years. As the Economist has put it: “The key to long life, it seems, is not to do too much.” When things are really tough, bacteria are prepared to shut down all systems and wait for better times. In 1997 scientists successfully activated some anthrax spores that had lain dormant for eighty years in a museum display in Trondheim, Norway. Other microorganisms have leapt back to life after being released from a 118-year-old can of meat and a 166-year-old bottle of beer. In 1996, scientists at the Russian Academy of Science claimed to have revived bacteria frozen in Siberian permafrost for three million years. But the record claim for durability so far is one made by Russell Vreeland and colleagues at West Chester University in Pennsylvania in 2000, when they announced that they had resuscitated 250-million-year-old bacteria called Bacillus permians that had been trapped in salt deposits two thousand feet underground in Carlsbad, New Mexico. If so, this microbe is older than the continents.

The report met with some understandable dubiousness. Many biochemists maintained that over such a span the microbe’s components would have become uselessly degraded unless the bacterium roused itself from time to time. However, if the bacterium did stir occasionally there was no plausible internal source of energy that could have lasted so long. The more doubtful scientists suggested that the sample may have been contaminated, if not during its retrieval then perhaps while still buried. In 2001, a team from Tel Aviv University argued that B. permians were almost identical to a strain of modern bacteria, Bacillus marismortui, found in the Dead Sea. Only two of its genetic sequences differed, and then only slightly.

“Are we to believe,” the Israeli researchers wrote, “that in 250 million years B. permians has accumulated the same amount of genetic differences that could be achieved in just 3–7 days in the laboratory?” In reply, Vreeland suggested that “bacteria evolve faster in the lab than they do in the wild.”

Maybe.

It is a remarkable fact that well into the space age, most school textbooks divided the world of the living into just two categories—plant and animal. Microorganisms hardly featured. Amoebas and similar single-celled organisms were treated as proto-animals and algae as proto-plants. Bacteria were usually lumped in with plants, too, even though everyone knew they didn’t belong there. As far back as the late nineteenth century the German naturalist Ernst Haeckel had suggested that bacteria deserved to be placed in a separate kingdom, which he called Monera, but the idea didn’t begin to catch on among biologists until the 1960s and then only among some of them. (I note that my trusty American Heritage desk dictionary from 1969 doesn’t recognize the term.)

Many organisms in the visible world were also poorly served by the traditional division. Fungi, the group that includes mushrooms, molds, mildews, yeasts, and puffballs, were nearly always treated as botanical objects, though in fact almost nothing about them—how they reproduce and respire, how they build themselves—matches anything in the plant world. Structurally they have more in common with animals in that they build their cells from chitin, a material that gives them their distinctive texture. The same substance is used to make the shells of insects and the claws of mammals, though it isn’t nearly so tasty in a stag beetle as in a Portobello mushroom. Above all, unlike all plants, fungi don’t photosynthesize, so they have no chlorophyll and thus are not green. Instead they grow directly on their food source, which can be almost anything. Fungi will eat the sulfur off a concrete wall or the decaying matter between your toes—two things no plant will do. Almost the only plantlike quality they have is that they root.

Even less comfortably susceptible to categorization was the peculiar group of organisms formally called myxomycetes but more commonly known as slime molds. The name no doubt has much to do with their obscurity. An appellation that sounded a little more dynamic—“ambulant self-activating protoplasm,” say—and less like the stuff you find when you reach deep into a clogged drain would almost certainly have earned these extraordinary entities a more immediate share of the attention they deserve, for slime molds are, make no mistake, among the most interesting organisms in nature. When times are good, they exist as one-celled individuals, much like amoebas. But when conditions grow tough, they crawl to a central gathering place and become, almost miraculously, a slug. The slug is not a thing of beauty and it doesn’t go terribly far—usually just from the bottom of a pile of leaf litter to the top, where it is in a slightly more exposed position—but for millions of years this may well have been the niftiest trick in the universe.

And it doesn’t stop there. Having hauled itself up to a more favorable locale, the slime mold transforms itself yet again, taking on the form of a plant. By some curious orderly process the cells reconfigure, like the members of a tiny marching band, to make a stalk atop of which forms a bulb known as a fruiting body. Inside the fruiting body are millions of spores that, at the appropriate moment, are released to the wind to blow away and become single-celled organisms that can start the process again.

For years slime molds were claimed as protozoa by zoologists and as fungi by mycologists, though most people could see they didn’t really belong anywhere. When genetic testing arrived, people in lab coats were surprised to find that slime molds were so distinctive and peculiar that they weren’t directly related to anything else in nature, and sometimes not even to each other.

In 1969, in an attempt to bring some order to the growing inadequacies of classification, an ecologist from Cornell University named R. H. Whittaker unveiled in the journal Science a proposal to divide life into five principal branches—kingdoms, as they are known—called Animalia, Plantae, Fungi, Protista, and Monera. Protista, was a modification of an earlier
term, Protoctista, which had been suggested a century earlier by a Scottish biologist named John Hogg, and was meant to describe any organisms that were neither plant nor animal.

Though Whittaker’s new scheme was a great improvement, Protista remained ill defined. Some taxonomists reserved it for large unicellular organisms—the eukaryotes—but others treated it as the kind of odd sock drawer of biology, putting into it anything that didn’t fit anywhere else. It included (depending on which text you consulted) slime molds, amoebas, and even seaweed, among much else. By one calculation it contained as many as 200,000 different species of organism all told. That’s a lot of odd socks.

Ironically, just as Whittaker’s five-kingdom classification was beginning to find its way into textbooks, a retiring academic at the University of Illinois was groping his way toward a discovery that would challenge everything. His name was Carl Woese (rhymes with rose), and since the mid-1960s—or about as early as it was possible to do so—he had been quietly studying genetic sequences in bacteria. In the early days, this was an exceedingly painstaking process. Work on a single bacterium could easily consume a year. At that time, according to Woese, only about 500 species of bacteria were known, which is fewer than the number of species you have in your mouth. Today the number is about ten times that, though that is still far short of the 26,900 species of algae, 70,000 of fungi, and 30,800 of amoebas and related organisms whose biographies fill the annals of biology.

It isn’t simple indifference that keeps the total low. Bacteria can be exasperatingly difficult to isolate and study. Only about 1 percent will grow in culture. Considering how wildly adaptable they are in nature, it is an odd fact that the one place they seem not to wish to live is a petri dish. Plop them on a bed of agar and pamper them as you will, and most will just lie there, declining every inducement to bloom. Any bacterium that thrives in a lab is by definition exceptional, and yet these were, almost exclusively, the organisms studied by microbiologists. It was, said Woese, “like learning about animals from visiting zoos.”

Genes, however, allowed Woese to approach microorganisms from another angle. As he worked, Woese realized that there were more fundamental divisions in the microbial world than anyone suspected. A lot of little organisms that looked like bacteria and behaved like bacteria were actually something else altogether—something that had branched off from bacteria a long time ago. Woese called these organisms archaebacteria, later shortened to archaea.

It has be said that the attributes that distinguish archaea from bacteria are not the sort that would quicken the pulse of any but a biologist. They are mostly differences in their lipids and an absence of something called peptidoglycan. But in practice they make a world of difference. Archaeans are more different from bacteria than you and I are from a crab or spider. Singlehandedly Woese had discovered an unsuspected division of life, so fundamental that it stood above the level of kingdom at the apogee of the Universal Tree of Life, as it is rather reverentially known.

In 1976, he startled the world—or at least the little bit of it that was paying attention—by redrawing the tree of life to incorporate not five main divisions, but twenty-three. These he grouped under three new principal categories—Bacteria, Archaea, and Eukarya (sometimes spelled Eucarya)—which he called domains.

Woese’s new divisions did not take the biological world by storm. Some dismissed them as much too heavily weighted toward the microbial. Many just ignored them. Woese, according to Frances Ashcroft, “felt bitterly disappointed.” But slowly his new scheme began to catch on among microbiologists. Botanists and zoologists were much slower to admire its virtues. It’s not hard to see why. On Woese’s model, the worlds of botany and zoology are relegated to a few twigs on the outermost branch of the Eukaryan limb. Everything else belongs to unicellular beings.

“These folks were brought up to classify in terms of gross morphological similarities and differences,” Woese told an interviewer in 1996. “The idea of doing so in terms of molecular sequence is a bit hard for many of them to swallow.” In short, if they couldn’t see a difference with their own eyes, they didn’t like it. And so they persisted with the traditional five-kingdom division—an arrangement that Woese called “not very useful” in his milder moments and “positively misleading” much of the rest of the time. “Biology, like physics before it,” Woese wrote, “has moved to a level where the objects of interest and their interactions often cannot be perceived through direct observation.”

In 1998 the great and ancient Harvard zoologist Ernst Mayr (who then was in his ninety-fourth year and at the time of my writing is nearing one hundred and still going strong) stirred the pot further by declaring that there should be just two prime divisions of life—“empires” he called them. In a paper published in the Proceedings of the National Academy of Sciences, Mayr said that Woese’s findings were interesting but ultimately misguided, noting that “Woese was not trained as a biologist and quite naturally does not have an extensive familiarity with the principles of classification,” which is perhaps as close as one distinguished scientist can come to saying of another that he doesn’t know what he is talking about.

The specifics of Mayr’s criticisms are too technical to need extensive airing here—they involve issues of meiotic sexuality, Hennigian cladification, and controversial interpretations of the genome of Methanobacterium thermoautrophicum, among rather a lot else—but essentially he argues that Woese’s arrangement unbalances the tree of life. The bacterial realm, Mayr notes, consists of no more than a few thousand species while the archaean has a mere 175 named specimens, with perhaps a few thousand more to be found—“but hardly more than that.” By contrast, the eukaryotic realm—that is, the complicated organisms with nucleated cells, like us—numbers already in the millions. For the sake of “the principle of balance,” Mayr argues for combining the simple bacterial organisms in a single category, Prokaryota, while placing the more complex and “highly evolved” remainder in the empire Eukaryota, which would stand alongside as an equal. Put another way, he argues for keeping things much as they were before. This division between simple cells and complex cells “is where the great break is in the living world.”

The distinction between halophilic archaeans and methanosarcina or between flavobacteria and gram-positive bacteria clearly will never be a matter of moment for most of us, but it is worth remembering that each is as different from its neighbors as animals are from plants. If Woese’s new arrangement teaches us anything it is that life really is various and that most of that variety is small, unicellular, and unfamiliar. It is a natural human impulse to think of evolution as a long chain of improvements, of a never-ending advance toward largeness and complexity—in a word, toward us. We flatter ourselves. Most of the real diversity in evolution has been small-scale. We large things are just flukes—an interesting side branch. Of the twenty-three main divisions of life, only three—plants, animals, and fungi—are large enough to be seen by the human eye, and even they contain species that are microscopic. Indeed, according to Woese, if you totaled up all the biomass of the planet—every living thing, plants included—microbes would account for at least 80 percent of all there is, perhaps more. The world belongs to the very small—and it has for a very long time.

So why, you are bound to ask at some point in your life, do microbes so often want to hurt us? What possible satisfaction could there be to a microbe in having us grow feverish or chilled, or disfigured with sores, or above all expire? A dead host, after all, is hardly going to provide long-term hospitality. 

To begin with, it is worth remembering that most microorganisms are neutral or even beneficial to human well-being. The most rampantly infectious organism on Earth, a bacterium called Wolbachia, doesn’t hurt humans at all—or, come to that, any other vertebrates—but if you are a shrimp or worm or fruit fly, it can make you wish you had never been born. Altogether, only about one microbe in a thousand is a pathogen for humans, according to National Geographic —though, knowing what some of them can do, we could be forgiven for thinking that that is quite enough. Even if mostly benign, microbes are still the number-three killer in the Western world, and even many less lethal ones of course make us deeply rue their existence. 

Making a host unwell has certain benefits for the microbe. The symptoms of an illness often help to spread the disease. Vomiting, sneezing, and diarrhea are excellent methods of getting out of one host and into position for another. The most effective strategy of all is to enlist the help of a mobile third party. Infectious organisms love mosquitoes because the mosquito’s sting delivers them directly to a bloodstream where they can get straight to work before the victim’s defense mechanisms can figure out what’s hit them. This is why so many grade-A diseases—malaria, yellow fever, dengue fever, encephalitis, and a hundred or so other less celebrated but often rapacious maladies—begin with a mosquito bite. It is a fortunate fluke for us that HIV, the AIDS agent, isn’t among them—at least not yet. Any HIV the mosquito sucks up on its travels is dissolved by the mosquito’s own metabolism. When the day comes that the virus mutates its way around this, we may be in real trouble. 

It is a mistake, however, to consider the matter too carefully from the position of logic because microorganisms clearly are not calculating entities. They don’t care what they do to you any more than you care what distress you cause when you slaughter them by the millions with a soapy shower or a swipe of deodorant. The only time your continuing well-being is of consequence to a pathogen is when it kills you too well. If they eliminate you before they can move on, then they may well die out themselves. This in fact sometimes happens. History, Jared Diamond notes, is full of diseases that “once caused terrifying epidemics and then disappeared as mysteriously as they had come.” He cites the robust but mercifully transient English sweating sickness, which raged from 1485 to 1552, killing tens of thousands as it went, before burning itself out. Too much efficiency is not a good thing for any infectious organism. 
A great deal of sickness arises not because of what the organism has done to you but what your body is trying to do to the organism. In its quest to rid the body of pathogens, the immune system sometimes destroys cells or damages critical tissues, so often when you are unwell what you are feeling is not the pathogens but your own immune responses. Anyway, getting sick is a sensible response to infection. Sick people retire to their beds and thus are less of a threat to the wider community. Resting also frees more of the body’s resources to attend to the infection. 

Because there are so many things out there with the potential to hurt you, your body holds lots of different varieties of defensive white cells—some ten million types in all, each designed to identify and destroy a particular sort of invader. It would be impossibly inefficient to maintain ten million separate standing armies, so each variety of white cell keeps only a few scouts on active duty. When an infectious agent—what’s known as an antigen—invades, relevant scouts identify the attacker and put out a call for reinforcements of the right type. While your body is manufacturing these forces, you are likely to feel wretched. The onset of recovery begins when the troops finally swing into action. 

White cells are merciless and will hunt down and kill every last pathogen they can find. To avoid extinction, attackers have evolved two elemental strategies. Either they strike quickly and move on to a new host, as with common infectious illnesses like flu, or they disguise themselves so that the white cells fail to spot them, as with HIV, the virus responsible for AIDS, which can sit harmlessly and unnoticed in the nuclei of cells for years before springing into action. 

One of the odder aspects of infection is that microbes that normally do no harm at all sometimes get into the wrong parts of the body and “go kind of crazy,” in the words of Dr. Bryan Marsh, an infectious diseases specialist at Dartmouth–Hitchcock Medical Center in Lebanon, New Hamphire. “It happens all the time with car accidents when people suffer internal injuries. Microbes that are normally benign in the gut get into other parts of the body—the bloodstream, for instance—and cause terrible havoc.” 

The scariest, most out-of-control bacterial disorder of the moment is a disease called necrotizing fasciitis in which bacteria essentially eat the victim from the inside out, devouring internal tissue and leaving behind a pulpy, noxious residue. Patients often come in with comparatively mild complaints—a skin rash and fever typically—but then dramatically deteriorate. When they are opened up it is often found that they are simply being consumed. The only treatment is what is known as “radical excisional surgery”—cutting out every bit of infected area. Seventy percent of victims die; many of the rest are left terribly disfigured. The source of the infection is a mundane family of bacteria called Group A Streptococcus, which normally do no more than cause strep throat. Very occasionally, for reasons unknown, some of these bacteria get through the lining of the throat and into the body proper, where they wreak the most devastating havoc. They are completely resistant to antibiotics. About a thousand cases a year occur in the United States, and no one can say that it won’t get worse. 

Precisely the same thing happens with meningitis. At least 10 percent of young adults, and perhaps 30 percent of teenagers, carry the deadly meningococcal bacterium, but it lives quite harmlessly in the throat. Just occasionally—in about one young person in a hundred thousand—it gets into the bloodstream and makes them very ill indeed. In the worst cases, death can come in twelve hours. That’s shockingly quick. “You can have a person who’s in perfect health at breakfast and dead by evening,” says Marsh. 

We would have much more success with bacteria if we weren’t so profligate with our best weapon against them: antibiotics. Remarkably, by one estimate some 70 percent of the antibiotics used in the developed world are given to farm animals, often routinely in stock feed, simply to promote growth or as a precaution against infection. Such applications give bacteria every opportunity to evolve a resistance to them. It is an opportunity that they have enthusiastically seized. 

In 1952, penicillin was fully effective against all strains of staphylococcus bacteria, to such an extent that by the early 1960s the U.S. surgeon general, William Stewart, felt confident enough to declare: “The time has come to close the book on infectious diseases. We have basically wiped out infection in the United States.” Even as he spoke, however, some 90 percent of those strains were in the process of developing immunity to penicillin. Soon one of these new strains, called Methicillin-Resistant Staphylococcus Aureus, began to show up in hospitals. Only one type of antibiotic, vancomycin, remained effective against it, but in 1997 a hospital in Tokyo reported the appearance of a strain that could resist even that. Within months it had spread to six other Japanese hospitals. All over, the microbes are beginning to win the war again: in U.S. hospitals alone, some fourteen thousand people a year die from infections they pick up there. As James Surowiecki has noted, given a choice between developing antibiotics that people will take every day for two weeks or antidepressants that people will take every day forever, drug companies not surprisingly opt for the latter. Although a few antibiotics have been toughened up a bit, the pharmaceutical industry hasn’t given us an entirely new antibiotic since the 1970s. 

Our carelessness is all the more alarming since the discovery that many other ailments may be bacterial in origin. The process of discovery began in 1983 when Barry Marshall, a doctor in Perth, Western Australia, found that many stomach cancers and most stomach ulcers are caused by a bacterium called Helicobacter pylori. Even though his findings were easily tested, the notion was so radical that more than a decade would pass before they were generally accepted. America’s National Institutes of Health, for instance, didn’t officially endorse the idea until 1994. “Hundreds, even thousands of people must have died from ulcers who wouldn’t have,” Marshall told a reporter from Forbes in 1999. 

Since then further research has shown that there is or may well be a bacterial component in all kinds of other disorders—heart disease, asthma, arthritis, multiple sclerosis, several types of mental disorders, many cancers, even, it has been suggested (inScience no less), obesity. The day may not be far off when we desperately require an effective antibiotic and haven’t got one to call on. 
It may come as a slight comfort to know that bacteria can themselves get sick. They are sometimes infected by bacteriophages (or simply phages), a type of virus. A virus is a strange and unlovely entity—“a piece of nucleic acid surrounded by bad news” in the memorable phrase of the Nobel laureate Peter Medawar. Smaller and simpler than bacteria, viruses aren’t themselves alive. In isolation they are inert and harmless. But introduce them into a suitable host and they burst into busyness—into life. About five thousand types of virus are known, and between them they afflict us with many hundreds of diseases, ranging from the flu and common cold to those that are most invidious to human well-being: smallpox, rabies, yellow fever, ebola, polio, and the human immunodeficiency virus, the source of AIDS. 

Viruses prosper by hijacking the genetic material of a living cell and using it to produce more virus. They reproduce in a fanatical manner, then burst out in search of more cells to invade. Not being living organisms themselves, they can afford to be very simple. Many, including HIV, have ten genes or fewer, whereas even the simplest bacteria require several thousand. They are also very tiny, much too small to be seen with a conventional microscope. It wasn’t until 1943 and the invention of the electron microscope that science got its first look at them. But they can do immense damage. Smallpox in the twentieth century alone killed an estimated 300 million people. 

They also have an unnerving capacity to burst upon the world in some new and startling form and then to vanish again as quickly as they came. In 1916, in one such case, people in Europe and America began to come down with a strange sleeping sickness, which became known as encephalitis lethargica. Victims would go to sleep and not wake up. They could be roused without great difficulty to take food or go to the lavatory, and would answer questions sensibly—they knew who and where they were—though their manner was always apathetic. 

However, the moment they were permitted to rest, they would sink at once back into deepest slumber and remain in that state for as long as they were left. Some went on in this manner for months before dying. A very few survived and regained consciousness but not their former liveliness. They existed in a state of profound apathy, “like extinct volcanoes,” in the words of one doctor. In ten years the disease killed some five million people and then quietly went away. It didn’t get much lasting attention because in the meantime an even worse epidemic—indeed, the worst in history—swept across the world. 

It is sometimes called the Great Swine Flu epidemic and sometimes the Great Spanish Flu epidemic, but in either case it was ferocious. World War I killed twenty-one million people in four years; swine flu did the same in its first four months. Almost 80 percent of American casualties in the First World War came not from enemy fire, but from flu. In some units the mortality rate was as high as 80 percent. 

Swine flu arose as a normal, nonlethal flu in the spring of 1918, but somehow over the following months—no one knows how or where—it mutated into something more severe. A fifth of victims suffered only mild symptoms, but the rest became gravely ill and often died. Some succumbed within hours; others held on for a few days. 

In the United States, the first deaths were recorded among sailors in Boston in late August 1918, but the epidemic quickly spread to all parts of the country. Schools closed, public entertainments were shut down, people everywhere wore masks. It did little good. Between the autumn of 1918 and spring of the following year, 548,452 people died of the flu in America. The toll in Britain was 220,000, with similar numbers dead in France and Germany. No one knows the global toll, as records in the Third World were often poor, but it was not less than 20 million and probably more like 50 million. Some estimates have put the global total as high as 100 million. 

In an attempt to devise a vaccine, medical authorities conducted tests on volunteers at a military prison on Deer Island in Boston Harbor. The prisoners were promised pardons if they survived a battery of tests. These tests were rigorous to say the least. First the subjects were injected with infected lung tissue taken from the dead and then sprayed in the eyes, nose, and mouth with infectious aerosols. If they still failed to succumb, they had their throats swabbed with discharges taken from the sick and dying. If all else failed, they were required to sit open-mouthed while a gravely ill victim was helped to cough into their faces. 

Out of—somewhat amazingly—three hundred men who volunteered, the doctors chose sixty-two for the tests. None contracted the flu—not one. The only person who did grow ill was the ward doctor, who swiftly died. The probable explanation for this is that the epidemic had passed through the prison a few weeks earlier and the volunteers, all of whom had survived that visitation, had a natural immunity.

Much about the 1918 flu is understood poorly or not at all. One mystery is how it erupted suddenly, all over, in places separated by oceans, mountain ranges, and other earthly  impediments. A virus can survive for no more than a few hours outside a host body, so how could it appear in Madrid, Bombay, and Philadelphia all in the same week? 

The probable answer is that it was incubated and spread by people who had only slight symptoms or none at all. Even in normal outbreaks, about 10 percent of people have the flu but are unaware of it because they experience no ill effects. And because they remain in circulation they tend to be the great spreaders of the disease. 

That would account for the 1918 outbreak’s widespread distribution, but it still doesn’t explain how it managed to lay low for several months before erupting so explosively at more or less the same time all over. Even more mysterious is that it was primarily devastating to people in the prime of life. Flu normally is hardest on infants and the elderly, but in the 1918 outbreak deaths were overwhelmingly among people in their twenties and thirties. Older people may have benefited from resistance gained from an earlier exposure to the same strain, but why the very young were similarly spared is unknown. The greatest mystery of all is why the 1918 flu was so ferociously deadly when most flus are not. We still have no idea. 

From time to time certain strains of virus return. A disagreeable Russian virus known as H1N1 caused severe outbreaks over wide areas in 1933, then again in the 1950s, and yet again in the 1970s. Where it went in the meantime each time is uncertain. One suggestion is that viruses hide out unnoticed in populations of wild animals before trying their hand at a new generation of humans. No one can rule out the possibility that the Great Swine Flu epidemic might once again rear its head. 

And if it doesn’t, others well might. New and frightening viruses crop up all the time. Ebola, Lassa, and Marburg fevers all have tended to flare up and die down again, but no one can say that they aren’t quietly mutating away somewhere, or simply awaiting the right opportunity to burst forth in a catastrophic manner. It is now apparent that AIDS has been among us much longer than anyone originally suspected. Researchers at the Manchester Royal Infirmary in England discovered that a sailor who had died of mysterious, untreatable causes in 1959 in fact had AIDS. But for whatever reasons the disease remained generally quiescent for another twenty years. 

The miracle is that other such diseases haven’t gone rampant. Lassa fever, which wasn’t first detected until 1969, in West Africa, is extremely virulent and little understood. In 1969, a doctor at a Yale University lab in New Haven, Connecticut, who was studying Lassa fever came down with it. He survived, but, more alarmingly, a technician in a nearby lab, with no direct exposure, also contracted the disease and died. 

Happily the outbreak stopped there, but we can’t count on such good fortune always. Our lifestyles invite epidemics. Air travel makes it possible to spread infectious agents across the planet with amazing ease. An ebola virus could begin the day in, say, Benin, and finish it in New York or Hamburg or Nairobi, or all three. It means also that medical authorities increasingly need to be acquainted with pretty much every malady that exists everywhere, but of course they are not. In 1990, a Nigerian living in Chicago was exposed to Lassa fever on a visit to his homeland, but didn’t develop symptoms until he had returned to the United States. He died in a Chicago hospital without diagnosis and without anyone taking any special precautions in treating him, unaware that he had one of the most lethal and infectious diseases on the planet. Miraculously, no one else was infected. We may not be so lucky next time. 

And on that sobering note, it’s time to return to the world of the visibly living. 


Saturday, July 13, 2019

THE ENCKE WINDOW (PART 2): EPISODIC BOMBARDMENT, KOYAANISQATSI, & 'CATACLYSMIC EVOLUTION' - A TELEOLOGICAL SYNCHRONICITY

TOTAL SOLAR ECLIPSE, 2 JULY, AS SEEN FROM CHILE

"As Steven Ostro of the Jet Propulsion Laboratory has put it, 'Suppose that there was a button you could push and you could light up all the Earth-crossing  asteroids larger than about ten meters, there would be over 100 million of these objects in the sky.' In short, you would see not a couple of thousand distant twinkling stars, but millions upon millions upon millions of nearer, randomly moving objects—'all of which are capable of colliding with the Earth and all of which are moving on slightly different courses through the sky at different rates. It would be deeply unnerving.' Well, be unnerved because it is there. We just can’t see it."

from 'Bang', A Short History of Nearly Everything, Bill Bryson (2003)

"Clear the battlefield and let me see,
all the profit from our victory.
You talk of freedom, starving children fall,
are you deaf when you hear the seasons call?

Were you there to watch the Earth be scorched,
did you stand beside the spectral torch?
Know the leaves of sorrow turned their face,
scattered on the ashes of disgrace.

Every blade is sharp, the arrows fly,
where the victims of your armies lie.
Where the blades of grass and arrows reign,
there will be no sorrow, be no pain."

'Battlefield', Tarkus, Emerson Lake and Palmer (1972)

Sunday, June 30, 2019

THE ENCKE WINDOW (PART 1): COMETS, ASTEROIDS and ROGUE CIVILIZATIONS - AN ON THE BRINK SPECIAL REPORT

HALE-BOPP (1997)

"Comet, comet shining bright
On the highways of the night,
What immortal hand or eye
Dare comprehend your starry sky?

Comet, comet shooting fast,
Borne in distant aeons past,
Bringing water, ice and stone,
And maybe life: are we 'alone'?

Comet, comet please come quick,
Mother Earth is very sick.
Comet, comet please come now
To cleanse the Earth of us, somehow."


PLEIADES/MATARIKI/SUBARU/'SEVEN SISTERS'

"Think of the Earth’s orbit as a kind of freeway on which we are the only vehicle, but which is crossed regularly by pedestrians who don’t know enough to look before stepping off the curb. At least 90 percent of these pedestrians are quite unknown to us. We don’t know where they live, what sort of hours they keep, how often they come our way. All we know is that at some point, at uncertain intervals, they trundle across the road down which we are cruising at sixty-six thousand miles an hour."

from 'Bang', A Short History of Nearly Everything, Bill Bryson (2003)

Welcome to broadcast #284 of On the Brink Radio, recorded beneath Grandmother Pohutakawa here on Aotea, Great Barrier Island, New Zealand. Today is the 111th anniversary of the Tunguska event, and this show is about what I am calling 'the Encke Window' and the huge role that comets and asteroids have played and continue to play in the existence, evolution and extinction of life as we know her here on the only planet we know for sure who has life as we know her. This topic is astounding in scope and significance for being here now, yet due to its somewhat heavy implications is not on the public radar or even on peoples' minds much other than mine and a few dozen assorted astronomers and paleo-catastrophists.

This area of inquiry is of great personal significance to me, and in honour of that I am working on a comprehensive blog post that will be in progress all this coming week. I will also being Part Two of this show next week, going into greater detail and sharing the work of some leading researchers in this area.

Encke was the name of the astronomer who first calculated its orbit, and it was the second periodic comet to be discovered after Halley's. Encke comes around every 3.3 years and at its brightest is almost visible to the naked eye. Of the thousands of comets known today, Encke is unique not only in the frequency and proximity of its terrestrial encounters, but more importantly, due to its peculiar orbital characteristics, unlike most of the other comets who pass within the solar system, it is not gravitationally affected by Jupiter or Saturn. These gas giant planets are major drivers of cometary and asteroidal perturbation and/or eventual ejection from the heliocosm, but Encke is immune to these influences.


Very interestingly, the Encke of today is believed to be a mere remnant or 'daughter fragment' of what was once a true super-comet with a nucleus of 100 km in diameter. This is an Earth-shattering story, forgive the pun, and I won't go too deeply into it here, but in my blog post and next week's show I will be elaborating on the work of legendary UK astronomers Victor Clube and William Napier, whose brilliant research paved the way for the whole 'impact origin of mass-extinctions' theory, which the father-son team of George and Luis Alvarez got most of the credit for.





CHICXLULB, YUCATAN PENINSULA MEXICO
http://discovermagazine.com/2016/oct/drilling-to--doomsday


I am learning more about this every day, but as I understand it now, the Alvarez's work focused primarily on one impact event which is now known as the Chicxulub site on the Yucatan peninsula of Mexico, and is believed to be what triggered the mass-extinction sequence of 65-66 million years ago. The work of Clube and Napier, both of whom are professional astronomers unlike the Alvarez team, on the other hand, investigates a much bigger picture involving the origin of super-comets as a function of the sun's motion through the arms of the Milky Way. Clube and Napier's work, moreover, enables a degree of chronological awareness providing a predictive capability.

In a nutshell, the Earth intersects the orbit of Encke twice a year, which I am calling the 'Encke windows'. Right now on 30 June we are smack in the middle of one of these windows, which runs from late June into early July. I am giving it a week each way, but what we're describing is a probability distribution more than an astronomical alignment. The other 'Encke window' is in late October and early November; this is when the Taurid meteor show occurs.

These two periods of time are when the Earth passes through the path of all the fragments and debris that remain from the disintegration of the primary super-comet body; logically, these are the most likely times that we would experience an impact from any Encke-related object.



LAKE CHEKO, TUNGUSKA, SIBERIA

Note that today, 30 June, is the 111th anniversary of the Tunguska Siberia event, the largest explosion ever witnessed or recorded on Earth. Believed to be an airburst from an inbound comet or asteroid, entire forests were leveled and burned for thousands of square kilometers and seismic shock waves measured around the world. No object remained for examination, but a circular lake marks the spot today.

"One hundred and eleven years ago, [on 30 June 1908] hundreds of reindeer and a few dozen humans witnessed an —although they didn't know it at the time. An explosion left a scene in Siberia, Russia, with little evidence of its origin except flattening 500,000 acres of uninhabited forest, scorching the land, creating "glowing clouds" and producing  that were detected around the world. Newspapers reported this may have been a volcanic explosion or a mining accident or—a far-fetched idea—that this might have been an asteroid or comet hitting Earth."

https://phys.org/news/2019-06-tunguska-revisited-year-old-mystery-impact.html

Two years ago a team of Czech astronomers published the results of their research which led them to believe that a great number of large daughter-fragments of Encke exist but are not visible to us due to being obscured by clouds of dust and debris, making another Tunguska-level event much more probable than had previously been believed.

I had a very freaky experience in 2015 here on Aotea. I'd been swimming with a pod of dolphins every day for a week right here, and was deeply connected with them...something I cannot put into words but could...and can...feel quite powerfully. One afternoon I had just returned from the ocean and was sitting at my art table when WHAM! Out of the blue this extraordinarily clear image appeared in my mind's eye, unlike anything I'd ever experienced before. I knew that this image had been telepathically transmitted to me by the dolphins (they are known for this kind of thing), but what really blew me away was not just that it was from them, but what it was an image of:  it was an impression of what a comet or asteroid might look like seconds before impact if it were on a trajectory directly toward the observer, that is, coming straight at you. Implicit in this transmission was not only that ancestors of the dolphins of today had witnessed something like this and had lived to share it (and now its stored within their collective memory) but even more significantly, that something like this was about to happen again in the near future. I can't give any dates or numbers but the message was clear as a bell and its urgency has stayed with me ever since it happened.



"SO LONG, AND THANKS FOR ALL THE FUSH!"


IMAGE TRANSMITTED TO ME BY DOLPHINS,
IMPRESSION OF SECONDS BEFORE IMPACT

[NOTE: I am working on a painting of this now!]

When did this transmission from the dolphins occur? On 25 October 2015, right in the middle of the Oct-Nov Encke window.






Right now here in New Zealand the Maori New Year called Matariki is being celebrated. Matariki is their name for the Pleiades, and it is around this time of year that they are seen to rise in the darkening evening sky. The November Encke window meteor stream of early November emanates from within the constellation Taurus, hence the name Taurids, and the Pleiades are the shoulder of Taurus the Bull. The June-July Encke window has Pleiades on the horizon, and the Oct-Nov window has them at the zenith. The Pleiades, or Seven Sisters, figure heavily in the mythology of many indigenous cultures, often thought of as 'where our ancestors came from.' Very interesting food for thought, the connections between the Pleiades, Encke, the origins of water and life as we know her...and the fate of civilization?


UCY.TV'S YOUTUBE CHANNEL:
http://www.youtube.com/channel/UCEGocUztnYtS-I2kk97AWqA

LISTEN AND/OR DOWNLOAD ANYTIME ARCHIVE LINK FOR THIS SHOW

Tuesday, April 30, 2019

TASMANIA AS GONDWANALAND / LIESBET VERSTRAETEN HAPPY BIRTHDAY :)

LIESBET AT BOTTLE NECK BAY FLINDERS ISLAND TASMANIA

"Reading the country was once essential to Aboriginal people's survival. It has become something of a lost art, which is a great pity. Mostly natural processes are slow and subtle and remain unseen and ignored. The danger is that by failing to pay attention to the forces, large and small, which shape our landscapes, not only do the landscapes suffer but we are impoverished in spirit ourselves."

John Landy

PETER DOMBROVSKIS, LAKE OBERON

Welcome to On The Brink radio comin' atcha from the central highlands of Tasmania. This week's show is in honour of 'little Tassie' as not only the place where I've had some of my most powerful and amazing adventures and where some of the most interesting and coolest people I know live, but also as an extraordinarily unique land with some of the most beautiful and spectacular landscapes in all of Australia as well as endemic florae and faunae, some of whom have been alive since the 'break-up' of the ancient super-continent called Gondwana by geologist Edward Suess.

GONDWANA SUPER-CONTINENT (so we think!)

The first half of this show gives a run-down of my visits to Tasmania since 2001 and the truly legendary people I've met and places I've been honoured to be able to visit; the second half gives an overview of the unique plants, animals and landscape ancestors who comprise what is to me the real Tasmania.

Tasmania was the birthplace of Australia's first wilderness photography as well as Australia's environmental movement. Olegas Truchenas and Peter Dombrovskis shared the beauty and power of Tasmanian landscapes, catalyzed resistance to the damming of Lake Pedder and stopped a subsequent project to dam the Franklin River.

LAKE PEDDER, MID-1950'S BEFORE DAMMING
PETER DOMBROVSKIS, COX BIGHT, SOUTH COAST

PETER DOMBROVSKIS PHOTOS
http://aniwaniwa-lokahi-renavigation.blogspot.com/2014/10/wild-island-tasmania-gallery-peter.html


Tasmania is just as maritime of an environment as New Zealand, but she lacks the oceanic awareness that most Kiwi's take for granted. Tasmania in no way needs the tourism gimmickry of the whale-watching business or the 'swim with sting-rays' mentality that would make Sir Peter Blake roll in his davey jone's locker...but she could use a bit of enhanced acknowledgement on the part of the people who live here that, yes, Tasmania is surrounded by a lot of ocean in every direction, an ocean teeming with myriad and wonderful life-forms.


AUSTRALIA'S OCEAN CURRENTS


TASMANIA'S OCEAN CURRENTS

"NOWHERE ELSE ON EARTH:  TASMANIA'S MARINE NATURAL VALUES"
https://d3n8a8pro7vhmx.cloudfront.net/marine/pages/609/attachments/original/1500603668/NowhereElseOnEarthReport.pdf?1500603668


 HUMPBACKS AND SOUTHERN RIGHTS
 BOTTLE-NOSED DOLPHINS
 RED HAND FISH
WEEDY SEA-DRAGON

Tasmania also has on occasion two of the most awesomely magical and beautiful gifts Mother Nature has to share with us, bio-luminescence and the aurora, in this case, australis, both of which I've witnessed but not in Tasmania.





LISTEN AND/OR DOWN-LOAD ANYTIME ARCHIVE LINK FOR THIS SHOW
https://soundcloud.com/user-272031059/on-the-brink-radio-275-tasmania-today-gondwana-is-alive


And I'd like to wish a beautiful happy birthday to Liesbet Verstraeten, with whom I was very lucky to share five amazing years. As far as I know, she is living somewhere in Tasmania, picking fruit when it's the season and hopefully painting rocks and playing her flute. Today when I sat down to send her a birthday email I looked out the window to see the first rainbow or 'aniwaniwa' I'd seen in months...a very symbolic synchronicity as Liesbet and I were always huge fans of rainbows. I can tell the ancestors and nature devas are smiling on us now as much as ever.



 FIRST ANIWANIWA I'VE SEEN IN MONTHS :)
 LIESBET WITH CUPPA and HUNDERTWASSER CARD,
BALARNIA, FLINDERS ISLAND, 2011

"We must strive for a peace treaty with nature, the only superior creative power on which man depends. This peace treaty with nature would have to contain at least the following points:

1) We must learn the language of nature in order to reach an understanding of her.

2) We must give back territories to nature which we have misappropriated and devastated. For example, according to the principle:  everything which is horizontal, under the open sky, belongs to nature, including, for example, roof, roads.

3) Tolerance of spontaneous vegetation.

4) The creation of man and the creation of nature must be reunited. The schism of these creations has had catastrophic consequences for nature and man.

5) Life in harmony with the laws of nature.

6) We are only the guests of nature and must behave accordingly. Man is the most dangerous pest ever to devastate the Earth. Man must put himself behind ecological barriers so the Earth can regenerate.

7) Human society must again become a waste-free society. For only he who honours his own waste and re-uses it in a waste-free society transforms death into Life and has the right to live on this Earth. Because he respects the cycle, and allows the rebirth of life to occur."

FRIEDRICH HUNDERTWASSER, "PEACE TREATY WITH NATURE"

 OUR 'CHICKEN ROCK', FLINDERS ISLAND
SHADOWS OF TOGETHERNESS :)
GIFT FOR LIESBET FROM ME, 2012
 "HUNAB HIKU", PAINTING FOR ROB ALLISTON, HOBART, 2007
"S'AHA DJED", MURAL FOR BRUCE ROBERTS, HOBART, 2003
ROB ALLISTON AND ME HITCHING TO CRADLE, 2015

Rob Alliston was (and is) a true spiritual brother, a genuine legendary Tasmanian and one of the loveliest people I have known here. I'd known him since 2001 until he passed away in November 2018, from complications of his Parkinson's syndrome.  He was an avid environmentalist and had a great respect for the indigenous people of Australia, and he was a great supporter of me and my work, especially concerning the whales and dolphins and my art, and was also a great supporter of Liesbet and I when we were together.

Here is a link to listen to an interview I did with him on my radio show:

And a blog post in his honour:

LIESBET'S GIFT TO ROB :)


LIESBET'S VERY FIRST PAINTING, BELGIUM, 2007
MANAPOURI NZ MURAL, JEFF AND LIESBET, 2011
SOME OF LIESBET'S ROCKS, 2015

See my main site for more of our work together

https://dolphinmatrix.com/Jeff

Tasmania in general and Flinders Island in particular have some of the most beautiful and unique landscapes in all of the Australia that I've come to know and love since 2000.

OLD MAN'S HEAD, FLINDERS ISLAND, 2011

Here are some selections of my Flinders Island photos. Note that Google has been threatening to take down their awesome Picasaweb platform, so these photos could disappear at any time. I am currently in the process of looking for a new photo-sharing platform to put my work on.

"NOSE ROCK", FLINDERS ISLAND







MOTHER EARTH TEMPLE, FLINDERS ISLAND 2011
(facing east from crown chakra medicine wheel)

In 2011 Liesbet and I lived at our friend's remote property on Flinders Island for over four months, during which time we conceived, embarked on and completed what is still the biggest and most comprehensive art project I've ever undertaken. We called it our 'Mother Earth Temple.' It contains, among other things, over 1000 rocks, 100+ of them painted; a metric ton or more of sand; symbols, designs and  motifs honouring several indigenous spiritual traditions and cosmologies; and over 1200 person-hours of exclusively manual labour.


This is the story of the freakiest thing not only that ever happened to me in Tasmania, and not only in Australia, but maybe in my whole life.

"THE GHOULEST AND THE COOLEST: A REAL HITCH-HIKING ADVENTURE" JEFF PHILLIPS
http://synthaissance.blogspot.com/2009/07/ghoulest-and-coolest-real-hitch-hiking.html

CUSHION PLANT WITH LOT'S WIFE,
PETER DOMBROVSKIS